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Organic–inorganic  hybrid  perovskite  solar  cells  (PSCs)
have been recognized as a promising and cost-effective photo-
voltaic  technology  with  the  power  conversion  efficiency
(PCE)  exceeding  25%[1–3].  The  high  efficiency  is  attributed  to
the exceptional optoelectronic properties, such as high absorp-
tion  coefficient,  long  carrier  diffusion  length,  low  non-radiat-
ive recombination rate, and so on[4–7]. Compared to methylam-
monium  lead  triiodide  (MAPbI3)  perovskite,  formamidinium
lead  triiodide  (FAPbI3)  perovskite  exhibits  better  thermal  and
structural  stability.  Meanwhile,  it  has  a  narrower  bandgap,
which  is  close  to  the  optimum  bandgap  for  reaching
Shockley-Queisser limit (Fig. 1(a))[8]. So, FAPbI3 is an ideal can-
didate  for  highly  efficient  single-junction  PSCs.  However,  the
black  photoactive α-FAPbI3 formed  at  high  temperature
(~150  °C)  can  readily  convert  to  photoinactive δ-FAPbI3 un-
der ambient conditions[9–11],  which is  fatal  to device perform-
ance  and  stability.  Therefore,  various  approaches  have  been
proposed to overcome the phase transition. Here, we will dis-
cuss  three  strategies:  chloride-based  additives,  pseudo-hal-
ide anion engineering and ionic liquid engineering.

Chloride-based additives play an important role in improv-
ing the phase stability and crystallinity. The pioneer work was
reported  by  Ding’s  group  in  2014.  They  applied  ammonium
chloride  (NH4Cl)  as  the  additive  in  perovskite  precursor  solu-
tion to manipulate the film morphology. An 80.11% FF was ob-
tained[12].  Wang et  al.  indicated  that  less  volatile  additives
such  as  formamidinium  chloride  (FACl)  and  methylammoni-
um chloride (MACl) in precursor solution can form an interme-
diate  phase  to  prohibit  the  crystallization  of δ-FAPbI3,  which
then  converts  to α-FAPbI3 through  thermal  annealing[13].  Mu
et  al.  reported  that  MACl  acts  as  a  transitional  “stabilizer”  to
preserve  the  crystal  structure  and  form  black-phase
FAPbI3

[14].  Xie et  al.  proposed a new “vertical  recrystallization”
method  by  using  MACl  additive  to  make  FA-based  per-
ovskite  films  with  high  crystallinity,  yielding  a  PCE  of
20.6%[15].  Qing et  al.  described  the  synergistic  effects  of
DMSO  and  MACl  in  assisting  perovskite  crystallization,  lead-
ing  to  smoother  surface,  higher  crystallinity,  and  lower  de-
fect densities[16]. Kim et al. studied the function of MACl addit-
ive in the formation of α-phase FAPbI3 via analyzing the photo-
physical properties and using density functional theory. By op-

timizing  MACl  content,  they  achieved  a  certified  PCE  of
23.48% (Fig. 1(b))[17]. Min et al. further stabilized α-FAPbI3 by in-
corporating  methylenediammonium  dichloride  (MDACl2)  in-
to  FAPbI3 perovskite  lattices,  obtaining  a  certified  PCE  of
23.7%[18].

Pseudo  halides  can  also  improve  perovskite  crystallinity
and  phase  stability,  due  to  their  similar  properties  as  halides.
Thiocyanate  anion  (SCN−),  one  of  the  pseudo  halide  anions,
has received attention during past few years[19].  Lu et al. used
a methylammonium thiocyanate (MASCN) vapor-assisted treat-
ment  to  convert δ-FAPbI3 to  pure α-FAPbI3,  which  was  car-
ried out below the thermodynamic phase-transition temperat-
ure.  Molecular  dynamics (MD) simulations revealed that SCN–

can promote the formation and stabilization of α-FAPbI3.  The
resulted  PSCs  presented  excellent  performance  and  long-
term  operational  stability  (Fig.  1(c))[11].  Jeong et  al.  indicated
that  formate  (HCOO−)  can  suppress  anion-vacancy  defects  at
grain  boundaries  and  perovskite  film  surface.  By  using  form-
ate  additive, α-FAPbI3 PSCs  offered  a  PCE  of  25.6%  (certified
25.2%)[3].

Ionic  liquid  engineering  is  also  an  effective  approach  to
stabilize  black α-FAPbI3.  DMF  and  DMSO  are  usually  used  in
combination to retard perovskite crystallization, and the experi-
ment  was  processed  in  an  inert  atmosphere  with  strict  con-
trol of both temperature and humidity[20].  Hui et al.  used ion-
ic  liquid  methylamine  formate  (MAFa)  to  replace  DMF:DMSO
as solvent of PbI2 in the two-step deposition. The strong inter-
actions with PbI2 through C=O···Pb chelation and N–H···I hydro-
gen bonds promote the vertical growth of PbI2, forming nano-
scale  channels  to  facilitate  the  penetration  of  FAI  into  PbI2

film.  This  enables  rapid  conversion  to α-FAPbI3 regardless  of
humidity  and  temperature.  A  PCE  of  24.1%  was  achieved
(Fig. 1(d))[21].

In  summary,  many  efforts  have  been  put  into  making
pure α-FAPbI3 solar  cells,  and  the  phase  stability  and  long-
term operational stability should be further improved. Under-
standing  the  phase  transition  and  optimizing  the  fabrication
methods  will  further  enhance  the  performance  and  stability
of PSCs for commercialization. 
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